# Knotenfärbung

- Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k
  Farben ist eine Abbildung c:V→{I,...,k}, so dass c(u)≠c(v) für alle {u,v}∈E.
  - Die chromatische Zahl  $\chi(G)$  eines Graphen G ist die minimale Anzahl von Farben, die für eine Knotenfärbung von G benötigt wird.
  - c⁻¹(i)⊆V heißt die i-te Farbklasse von c.
- Anwendungen (Konfliktgraphen)
  - Mobilfunk (Zuordnung von Frequenzen zu Sendern)
  - Compilerbau (Zuordnung von Registern zu Variablen)
  - Scheduling (Zuordnung von Ressourcen zu Aufgaben)

# Abschätzungen

### • Einfache Überlegungen

- Sei α(G) die Kardinalität der größten unabhängigen Menge in G und ω(G) die Kardinalität der größten Clique in G
- $\chi(G) \ge 2 \Leftrightarrow |E| \ge 1$
- ▶  $\chi(G) \ge 3 \Leftrightarrow G$  ist nicht bipartit  $\Leftrightarrow G$  enthält Kreis ungerader Länge
- χ(G)≥ω(G)

#### Untere und obere Schranke

- ▶ Jede Farbklasse ist eine unabhängige Menge
- Untere Schranke  $\chi(G) \ge \max \left\{ \omega(G), \frac{n}{\alpha(G)} \right\}$
- Obere Schranke  $\chi(G) \le \frac{1}{2} + \sqrt{2|E| + \frac{1}{4}}$

# Ein Greedy-Algorithmus

- Wähle gültige Farbe mit niedrigstem Index
  - ∀v∈V: c(v)=0
  - ▶ While  $\exists v \in V: c(v)=0$
  - $c(v)=\min\{k\in\{1,2,...\}: k\neq c(u) \text{ für alle } u\in N(v)\}$
  - Endwhile
- Lineare Laufzeit
- $\chi(G) \leq Alg(G) \leq \Delta(G)+1$  wobei  $\Delta(G)=\max_{v \in V}(deg(v))$
- Satz: Zu jedem Graphen existiert eine Knotenfolge, so dass der Algorithmus mit  $\chi(G)$  Farben auskommt.
  - Beweis: Durchlaufe jede Farbklasse vollständig

## Satz von Brooks

- In vollständigen Graphen und Kreisen ungerader Länge wird jeweils eine Farbe mehr als der maximale Knotengrad benötigt.
  - ▶ Vollständige Graphen:  $\chi(K_n)=n=\Delta(G)+I$
  - ▶ Ungerade Kreise:  $\chi(C_{2n+1})=3=\Delta(G)+1$
- Im folgenden Satz wird gezeigt, dass dies die einzigen zusammenhängenden Graphen mit dieser Eigenschaft sind.
- Satz (Brooks, 1941): Sei G ein zusammenhängender Graph, so dass  $G \neq K_n$  und  $G \neq C_{2n+1}$ . Dann gilt  $\chi(G) \leq \Delta(G)$ .

## Beweis des Satzes von Brooks

#### Notation:

- A+v=A∪{v}
- $A-v=A\setminus\{v\}$
- G-v=G[V\{v}]
- $\Delta = \Delta(G)$
- $\Delta \leq 2$ : ein Knoten, Pfad oder Kreis, also sei  $\Delta \geq 3$
- Induktion über n=|V|
  - Anfang: K<sub>4</sub>
  - $\blacktriangleright$  Annahme: Alle Graphen mit höchstens n Knoten sind Cliquen mit  $\Delta+1$  Knoten oder  $\Delta$ -färbbar

#### I. Fall: ∃v: G-v ist nicht zusammenhängend

- Sei A eine Zusammenhangskomponente in G-v und B=V-A-v
- Aus der Annahme folgt, dass A+v und B+v entweder Cliquen mit  $\Delta$ +I Knoten oder  $\Delta$ -färbbar sind
- Der erste Fall kann nicht eintreten, da v mit jeweils mindestens einem Knoten aus A und B verbunden ist
- Färbe A+v und B+v getrennt, benennen die Farben so um, dass v in beiden Färbungen die gleiche Farbe hat und setze die Färbungen zusammen.

## 2. Fall: Nicht Fall I und ∃v,w: {v,w}∉E und G-v-w ist nicht zusammenhängend

- ▶ Sei A eine Zusammenhangskomponente in G-v-w und B=V-A-v-w
- v und w sind jeweils mit mind. einem Knoten aus A und B verbunden
- $\bullet$  G<sub>1</sub>=G-B und G<sub>2</sub>=G-A
- ▶  $G_1$ +vw und  $G_2$ +vw sind Cliquen mit  $\Delta$ +1 Knoten oder  $\Delta$ -färbbar (Annahme)
- Fall 2.1: Beide Graphen sind Δ-färbbar
  - Es gibt  $\Delta$ -Färbungen in denen v und w jeweils unterschiedliche Farben haben
  - Umbenennen der Farben und zusammensetzen
- ▶ Fall 2.2: Einer der Graphen ( $G_1+vw$ ) ist Clique mit  $\Delta+1$  Knoten
  - v und w sind jeweils mit genau einem Knoten in B verbunden
  - Es gibt eine  $\Delta$ -Färbung von  $G_2$ , in der v und w die gleiche Farbe haben (Kontraktion & Annahme)
  - Das gleiche gilt für G<sub>1</sub> (vollständiger Graph mit einer fehlenden Kante)
  - Umbenennen der Farben und zusammensetzen

### 3. Fall: ∀v,w mit {v,w}∉E: G-v-w ist zusammenhängend

- Wähle u, so dass  $deg(u)=\Delta$
- Wenn alle Nachbarn von u verbunden sind, ist G vollständig (Zusammenhang und maximaler Knotengrad  $\Delta$ )
- Also seien v,w nicht benachbarte Nachbarn von u
- $v_1 = v, v_2 = w, v_{n+1} = u$
- Wähle v<sub>i</sub>, so dass v<sub>i</sub> einen Nachbarn in {v<sub>i+1</sub>, ..., v<sub>n+1</sub>} hat (möglich, da G-v-w zusammenhängend)
- Wende den Greedy-Algorithmus auf  $v_1, ..., v_{n+1}$  an
  - $c(v_1)=c(v_2)=1$
  - Für jeden Knoten  $v_3$ , ...,  $v_n$  wurden höchstens  $\Delta$ -I der Nachbarn bereits gefärbt, es werden also nicht mehr als  $\Delta$  Farben verwendet
  - Alle  $\Delta$  Nachbarn von  $v_{n+1}$  wurden gefärbt, zwei davon (v und w) mit derselben Farbe  $\Rightarrow$  Eine der  $\Delta$  Farben steht zur Verfügung

q.e.d.

# Vierfarbensatz



- Färben von Landkarten, so dass benachbarte Länder nicht dieselbe Farbe haben
  - Modellierung durch planare Graphen (Graphen, die man überschneidungsfrei in der Ebene zeichnen kann)
- Vermutung von 1852: Es genügen vier Farben.
- Satz (Appel und Haken, 1977): Für jeden planaren Graphen G ist χ(G)≤4.
  - ▶ Überprüfung von 1936 Graphen (später 1476) durch einen Computer
  - ▶ 4-Färbungsalgorithmus für planare Graphen mit Laufzeit  $O(|V|^2)$